s

FILE COPY

ESD~-TR-75-97

MTR-3006

A RANDOM WORD GENERATOR
FOR PRONOUNCEABLE PASSWORDS

- 835397

Copy Ne

[& o

NOVEMBER 1975

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

Approved for public release;
distribution unlimited.

ELECTRONIC SYSTEMS DIVISION
ATIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Project No. 522N
Prepared by
THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-75-C-0001

A e O R

When U.S. Government drawings, specifications,
or other data are used for any purpose other
than a definitely related government procurement
operation, the government thereby incurs no
responsibility nor any obligation whatsoever; and
the fact that the government may have formu-
lated, furnished, or in any way supplied the said
drawings, specifications, or other data is not to be
regarded by implication or otherwise, as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

n, USAF ROGEB/R. SCHELL, Major, USAF
Profjfct Engineer

F. WAH LEONGS
Project Officer
Air Force Data Services Center

FOR THE COMMANDER

Forkb D S

FRANK J. , Colonel, USAF

Director, Information Systems

Technology Applications Office

Deputy for Command and Management Systems

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T. REPORT NUMBER Z. GOVT ACCESSION NO/| 3. RECIPIENT'S CATALOG NUMBER
ESD-TR~-75-97
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A RANDOM WORD GENERATOR FOR

PRONOUNCEABLE PASSWORDS 6. PERFORMING ORG. REPORT NUMBER
MTR-3006
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
928-75-C-
M. Csger F19628-75-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
The MITRE Corporation AREA & WORK UNIT NUMBERS
Box 208
Project No. 522N
Bedford, MA 01730]
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Deputy chr Command ?m.d .Management Systems Novermiber 1976
Electronic Systems Division, AFSC 13. NUMBER OF PAGES
Hanscom Air Force Base, Bedford, MA 01731 181
14, MONITORING AGENCY NAME & ADDRESS(if different from Controliing Olfice) 1S. SECURITY CLASS, (of this report)
UNCLASSIFIED
1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

—
*7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by biock number)

COMPUTER SECURITY
MULTICS
PASSWORDS

20. ABSTRACT (Continue on reverse side il necessary and identify by biock number)

The random word generator is a PL/I program designed to run on Honeywell's
Multics system that generates random pronounceable words suitable for use as
passwords for Multics users.

DD , SgsM?s 1473 EDITION OF 1 NOV 65 1S OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Enterec)

ACKNOWLEDGEMENT

Special acknowledgement is extended to Lt. Col. Robert Park
and 1Lt. Brian Woodruff for their expert guidance in the prepara-
tion of Section IV of this report on the statistical analysis of
the random word generator.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
SECTION I BACKGROUND

SECTION II METHODOLOGY
REQUIREMENTS AND GOALS
PRONOUNCEABLE?
THE POOR APPROACH
THE IDEAL APPROACH
THE COMPROMISE APPROACH
SYLLABLES
JUXTAPOSITION
MISCELLANEOUS ASSUMPTIONS
Consecutive Vowels
The Vowel "y"
The Silent "e"
The Initial "y"
Three Identical Units
SUMMARY

SECTION III IMPLEMENTATION DETAILS
SPECIFICATION OF RULES
The Digram Table
The Unit Table
Random Units
The Algorithm
RESULTS

SECTION IV ANALYSIS

NUMBER OF WORDS

PROBABILITY OF A WORD

MOST PROBABLE WORD

DISTRIBUTION OF PROBABILITIES
Determination of Distribution
Application of the Distribution

AN ALTERNATIVE METHOD

SECTION V CONCLUSION
EVALUATION
OTHER APPLICATIONS

APPENDIX I TABLES

Page

10
11
11
12
13
14
15
15
15
16
16
16
16

18
18
18
20
21
21

24

25
26
28
29
31
32
35
35

40
40
41

43

TABLE OF CONTENTS (concluded)
APPENDIX II RANDOM WORD ALGORITHM
APPENDIX III SOURCE CODE
APPENDIX IV 2000 RANDOM WORDS
APPENDIX V STATISTICS
APPENDIX VI DOCUMENTATION
APPENDIX VII MODIFIED SOFTWARE FOR UNIFORM DISTRIBUTION

REFERENCES

50

58

113

129

132

173

193

LIST OF ILLUSTRATIONS

Figure Number

N OV =W N =

Random_word_ Flowchart

Number of Words of 6, 8, and 10 Letters

Distribution of Probabilities of Random Words
Distribution of Probabilities of 2653 Eight Letter Words
Enlarged Left Edge of Distribution

Distribution of Probabilities of 5893 Six Letter Words
Distribution of Probabilities of 1039 Ten Letter Words

Page

23
28
32
34
36
130
131

SECTION I
BACKGROUND

The random word generator is a PL/I program designed to run on
Honeywell’s Multiplexed Information and Computer System (Multics), a
large timesharing system. The purpose of the program is to generate
passwords that serve to authenticate the identities of users of Mul-
ties.

Users of the standard Multics system authenticate themselves at
each login (start of a terminal session) by typing in a password known
only to the user and the system. Usually the user selects a password
for himself at initial login and can change this password at any sub-
sequent login. The ability to change a password is useful when a user
suspects that someone else may have guessed his password.

A password is the key to user identification and protection.
From previous experience, however, it has become apparent that user-
selected passwords are frequently fairly easy to guess. For example,
passwords are often the user’s own first name, a name of a family mem-
ber, or his telephone number. [1] Some Multics installations, such as
the Air Force Data Services Center (AFDSC), are used to process clas-
sified information, and installations like the AFDSC cannot take a
chance that one of their user’s passwords will be guessed. The solu-
tion to the problem at the AFDSC was a decision to assign passwords to
users, rather than to allow users to pick their own. [2]

The administrative overhead of assigning a random password manu-
ally whenever a user changes his password is generally too much of a
burden -- especially when one considers that only a select few indi-
viduals may have access to other users’ passwords. Instead, the pos-
sibility of providing computer generated passwords that are printed
out at the user’s console on each password change was investigated. A
user s request to change his password would then become a call to a
system password generator program. This password generator has been
given the more general and descriptive name of "random word generator"
in this report.

Section II of this paper discusses the goals and methods used by
the random word generator. Section III contains implementation de-
tails and discusses the word generating algorithm. Section IV con-
tains an analysis of the algorithm and presents certain statisties. A
sample of random words generated can be found in Appendix 1IV.

Most of this report describes the random word generator that is
being made available for users on Multics. In order to satisfy a more
stringent criterion of "randomness" a modified version of the random
word generator has also been prepared that generates random words that
are all equally probable. This modified version is discussed at the
end of Section IV.

SECTION II
METHODOLOGY
REQUIREMENTS AND GOALS

The need for the Multics random word generator program can be
satisfied by fulfilling the following two requirements:

generate easily remembered words, and
make the words difficult to guess.

The first requirement is very important because users might be in-
clined to write down passwords that are difficult to remember, thereby
increasing the chances of a password compromise. Also, if too many
users forget their passwords, the administrative overhead of getting
the users logged in again could be greater than that of distributing
easier-to-remember passwords manually. The need for the second re-
quirement is apparent.

Both of these requirements are of course far too subjective for
direct implementation as a computer program. It is necessary to re-
state these requirements in a much more concrete manner so that mean-
ingful algorithms can be designed.

The requirement of "making the words difficult to guess" is most
easily satisfied by giving the program the ability to generate a very
large set of possible words, and the ability to generate these words
in a random manner. Both these capabilities can easily be achieved,
and thus we will be more concerned at this point with the first re-
quirement.

Consider that the random word generator either needs a large data
base of words to choose from -- an impractical approach that has been
discarded -- or has to form words out of sequences of letters it cre-
ates through some algorithm. The requirement of rememberability can
then be fulfilled if these sequences of letters are of one or more of
the following types:

1. Sequences of letters that can be easily visualized, such as
"aabbaa" or "xyxyxy".

2. Sequences of letters that form real English words.

3. Sequences of letters that form pronounceable "words", but are not
necessarily real words.

Of these three choices, methods 1 and 2 suffer from the difficul-
ty of specifying a practical algorithm for such sequences. Alterna-
tively, method 1 could be implemented using rules that yield an arbi-
trarily defined subset of all possible easy-to-visualize sequences,
but this subset is likely to be small for a reasonable number of
rules. There is no alternative for method 2 other than storing a vast
data base of real words.

The third method -- that of using pronounceable sequences -- is
the selected approach. The data base required for this method is rel-
atively small, the rules can be fairly well-defined, and the set of
words that can be generated is quite large. Realizing that the more
"English" a word looks the easier it usually is to remember, an at-
tempt was made to restrict the set of words generated to those which
obeyed some kinds of rules of English pronunciation. This attempt was
restructured as an attempt to make it theoretically possible for the
word generator to form most English words.

Because of this goal of making the generated words look like Eng-
lish, the word "pronounceable™ in this paper refers not just to struc-
tures that can be phonetically vocalized, but to a set of more re-
strictive and English-looking structures. For example, "tsip" is eas-
ily pronounceable, but is "un-English" because of the "ts" at the be-
ginning of the word. A different type of example is the "gh" combina-
tion. The word "cough" is pronounceable because "gh" in this context
can be pronounced like "f", but "ghrom" is not pronounceable as "from"
because "gh" never sounds like "f" at the beginning of a word.

PRONOUNCEABLE?

One may wonder how a goal of "pronounceability" can be attained
with well-defined rules, considering how undefined and exception-laden
the rules of English pronunciation are. The answer is simple: the
program does not care how a given word is to be pronounced -- it only
needs to make sure that the word can be pronounced. For example,
"tophat" could be pronounced "top-hat" or "to-fat", depending on the
reader’s preference. On the other hand, "tophsat" is only pronounce-
able as "tof-sat", not "top-hsat". Also, the vowel "o" in this word
might be pronounced in one of several ways.

Everyone knows that a given letter or sequence of letters could
be pronounced differently in different contexts, but the program is
usually not required to distinguish between the different contexts or
pronunciations. Unlike the "rules of pronunciation", the "rules of

10

pronounceability" can be made fairly pr‘ecise.1

However precise, the rules and method used to generate pronounce-
able words have been arrived at in a "refined" ad hoc manner and based
on the author’s intuition. The method is not described in any pub-
lished source. Hence, the words generated may be considered pro-
nounceable only by the author. Others may find some of these words
very difficult to pronounce, as when trying to pronounce a foreign
word with a strange combination of letters. Because of this possible
bias, the program was designed to incorporate as few global rules as
possible within its text. An external data base, a table, is used to
contain most of the subjectively determined rules. These external
rules consist of "yes" or "no" answers to various questions asked by
the program. The answers to the questions can easily be modified to
suit the user’s preference. "New" rules -- those asking new kinds of
questions ~- cannot be added without modifying the program.

THE POOR APPROACH

Letters are poor sources on which to base rules of pronounceabil-
ity. Not only do individual letters sound different in different
words, but pairs or triplets of letters often form single sounds that
may be unlike any of the component letters. Determining whether a
letter is pronounceable or '"legal" in a given word often involves
knowing how the letter is to be pronounced, which is in turn dependent
on such things as its position in the word or syllable and adjacent
letters. The large number of details that have to be checked for each
letter makes determination of pronounceability very complex.

THE IDEAL APPROACH

The ideal approach that will always generate good pronounceable
words would be to relieve the program of any notion of letters and use

1Phonological theory is a well developed science that in part at-
tempts to describe the phonetic structure of English (and other lan-
guages) in a complete and consistent manner. The totality of rules
and theorems used in such a description form far too complex a system
for the scope of the application discussed in this report. Creation
of a smaller subset of this system -- one that might be small enough
to implement and would still give reasonable results -- appeared to be
too vast an undertaking. Thus, standard phonological theory was not
considered in this work.

11

"phonemes"2 instead. A phoneme is an "element" of pronunciation --
a unit of sound that cannot be usefully broken down into smaller
sounds. For example, the pair "sh" as pronounced in English can al-
ways be represented as a single phoneme; the vowel "a" can be repre-
sented as one of several phonemes depending on its context. If the
rules could be defined, it should be possible to put together random
phonemes to form a pronounceable phoneme-word.

Unfortunately, though this method yields good pronounceable se-
quences, the translation from phonemes to letters is very difficult
and very un-algorithmic. An example of this difficulty is the phoneme
representing the sound of "k". This phoneme can be translated into
"e", "k", or "ck". Which one should be used? At the end of a word,
usually any one of these will work, and another randomization factor
has to be included to make the choice. At the beginning of a word,
"k" is always legal, "ck" is never legal, and "c" is legal only if the
following letter is not "e", "i",6 or "y" (in which case "c¢" would have
been pronounced like "s"). Then, to determine whether "c" is a candi-
date the following phoneme must first be translated into letters,
which may in turn depend on other adjacent phonemes. One can fix the
translation so that the "k" sound is always translated to the letter
"k", but then the goal of being able to generate most English words
would be far from satisfied (not to mention that the letter "c¢" would
never be used).

THE COMPROMISE APPROACH

One may notice that with the phoneme method the program "knows"
how the generated word is pronounced -- specifically not a requirement
as mentioned earlier., A compromise approach was chosen that uses sim-
ple "units", instead of phonemes, that consist of a single letter or a
two-letter pair. A given unit is considered by the program as having
only one "sound" in all its usages, although in reality that unit may
be pronounced in many different ways.

Rules can be determined for each unit, without regard to how
that unit is pronounced in context, by merely stating a rule that in-
cludes all usages of that unit. This composite rule is usually sim-
pler than all of the individual rules for the different pronunciations
of that unit. For example, the letter "g" can be treated as a unit,
and the rule for this unit at the beginning of a word says "this unit
may only be followed by a, e, i, 1, o, r, u or y." 1In some of these
cases "g" is pronounced soft and in others hard -- in fact there is no
simple rule for how "g" is pronounced (e.g., "gigantic" and "giggle"),

2also called "phonetic segments"™ in phonology.

12

but the program doesn’t need to make any distinctions.

The 34 units presently used are listed below. These units are
stored in a table and are input to the random word generator. A lar-
ger or smaller set can be defined if experience indicates these to be
unsatisfactory.

a f k p v ch th
b g 1 r W gh wh
(o] h m s X ph qu
d i n t y rh ck
e j o] u z sh

Note that the letter "q" is the only letter not appearing as a
one-letter unit because English usage makes it more convenient to
treat "qu" as a unit. Many two-letter vowel combinations, such as
"ea™, "ie", "ai", etc., that should be considered separate units are
not included because little loss of generality occurs (i.e., the set
of words that can be generated is nearly the same whether these vowels
are separate units or not). Also, double letter pairs like "11", "rr"
and "tt" need not be included for similar reasons. On the other hand,
the pair "sh" is needed because words such as "shrink" and "wash" are
not pronounceable when "s" and "h" are treated as separate units.

SYLLABLES

Besides the rules used by the program, there is a primary assump-
tion that governs the formation of words: if pronounceable syllables
are concatenated (subject to some minor restrictions), they will form
a pronounceable word. Thus, the task of the random word generator is
to form pronounceable syllables.

This task requires precise definition of "syllable"; thus the
following definition is made at this point: a syllable is an arbitrary
series of units that contains exactly one or two consecutive vowel
units. Vowel units are "a", "e", "i", "o", "u", and "y". For exam-
ple, the following are legal syllables {(where "v" represents a vowel
unit and "e" represents a non-vowel unit, or consonant unit):

cCcv cvveee cv v vv vec

and the following are illegal syllables:

ce (no vowels)

VA'A'S (more than 2 consecutive vowels)
veeve (all vowels not consecutive)

vev (all vowels not consecutive)

13

Note that each of the last two examples can possibly be split into two
syllables, such as "ve-cve" and "v-cv".

The above definition of "syllable" seems to work in English ex-
cept for one common case: the silent "e" at the end of words or some-
times sgllables often forms a syllable containing two non-contiguous
vowels. Of course, that is because English usually only requires a
vowel sound in a syllable, and in the case of silent "e" the "e"
should not be considered a vowel. The program, however, has no way of
telling whether the "e" is silent. To make matters worse, there are
words, such as "subtle", "bugle", "little" that do have a final sylla-
ble whose only vowel is the final (silent) "e". These are common
enough cases in English to warrant special consideration in the word
generator.

JUXTAPOSITION

The random word generator forms syllables from left to right, by
combining random units one at a time. For each new unit the program
determines whether that unit can legally be appended to the units al-
ready in the syllable. If it cannot, the unit is discarded and an-
other random unit is tried.

In English the legality of a unit is usually determined by check-
ing immediately adjacent units. Units separated from each other fre-
quently affect each other’s pronunciation but only occasionally deter-
mine whether the construction is legal or not. The random word gener-
ator uses rules of juxtaposition as the bases for creating pronounce-
able syllables.

Each time the program gets a new random unit, it forms a pair
consisting of that unit and the previous unit: This unit-pair is
looked up in a table and bits of information are extracted that speci-
fy what can be done with that pair. For example, the unit-pair "rt"
will have bits specifying that the pair may not begin a syllable and
that a vowel must precede this pair if it is entirely contained within
a syllable. The table may sometimes specify that a unit-pair must al-
ways be split between two syllables (for example, the pair "kp"),
which is one way in which a new syllable can be started. Some pairs,
such as "hh", can never appear together, even if split between sylla-
bles. The different types of rules that can be specified in the table
are discussed in the next section.

3The vowel pair "ue" in "baroque" and "catalogue" is another excep-
tion, though much less common.

14

MISCELLANEOUS ASSUMPTIONS

Several more assumptions have to be made before syllables can be
generated properly. Again, these assumptions were arrived at intui-
tively and no claim is made for their completeness. The assumptions
discussed below are those that have been incorporated into the program
structure, as opposed to those that are specified in external tables.
They are presented in order of importance.

Consecutive Vowels

A rule, in part already stated, involving consecutive vowels,
says that a maximum of two consecutive vowel units is permitted. This
rule pertains to all consecutive vowel units even across syllables.
The reason for this extension across syllables is that sequences such
as "ajiea" look "funny" and are sometimes difficult to pronounce, even
though there can be a syllable split in the middle. The English lan-
guage itself "admits" of this difficulty between consecutive words by
trying to correct it in two common cases: the use of "an" instead of
"a", and the alternate pronunciation of "the", when the following word
begins with a vowel sound. There are few English examples of more
than two consecutive vowels (the "eau" combination is one of them).
Note that the word "queen" is legal according to random word generator
rules because "qu" is considered to be a consonant unit.

A difficulty with this assumption involves the unit "y". For
purposes of syllabification, "y" must be treated as a vowel (i.e., a
syllable can contain the single vowel "y"), but for the above assump-
tion "y" should not be treated as a vowel. Three-vowel sequences in-
volving "y" are very common: "eye" and "you" being two examples. Thus
the requirement of at most two consecutive vowel units must be waived
if one of the vowels is "y",

The Vowel "y"

In order to solve the consecutive vowel problem above it sufficed
to treat "y" always as a consonant. However, it should also be legal
for "y" to be the only vowel in a syllable. Therefore, for the pur-
poses of syllabification only, the random word generator treats "y" as
a vowel only if the "y" is not immediately preceded by a vowel within
that syllable. The sequence "vowel-y-vowel" would thus have to be
split between two syllables, but "y-vowel-vowel" would not. The addi-
tional rule about silent "e" below allows a "vowel-y-e'" sequence to
end a word.

15

The Silent "e"

The special case of final "e" has previously been mentioned. The
final "e" in a word in English is almost never pronounced and there-
fore cannot be used as the only vowel in the last syllable. There is
no problem taking care of such exceptions in a uniform way. However,
there is a very large set of exceptions to this final "e" rule: words
such as "meddle", "nestle", "double" -- all ending in "le" -- are le-
gal words in English, yet no vowel is pronounced in the last syllable.
The rules used by the word generator do not allow final syllables of
"ble" and "tle" and therefore such words cannot be generated. This
class of words appears to be the largest that cannot be handled by the
word generator. In order to solve this deficiency it would be neces-
sary to first include "le" as a unit in the table, and then make spe-
cial kinds of tests to determine whether this unit is legal in a given
context. It is not possible, without creating new rules specific to
this "le" unit, to specify the necessary restrictions. Creating new
rules for this case was considered feasible, but appeared to be too
awkward and so was left out.

The Initial "y"

The unit "y" may not be the only vowel in the first syllable of a
word if the word begins with "y". Only strange words like "yclept"
violate this rule. This is a minor point but must be taken care of
explicitly. Otherwise, many strange words are generated.

Three Identical Units

There is nothing in the rules so far stated that prohibits three
or more identical consecutive consonants. This condition may possibly
be legal, provided that no more than two consecutive consonants occur
in the same syllable. 1Instead of trying to force a syllable split be-
tween such groups, the decision was made to merely limit the number of
consecutive identical units to two. Note that this restriction is not
a pronounceability problem, but a case of an un-English-looking con-
struction.

SUMMARY

The goal of the random word generator is to generate easily re-
membered words that are difficult enough to guess to be suitable for
passwords. This goal has been translated into requirements of pro-
nounceability and randomness. An attempt was made to include almost
all English words in the set of words that can be generated, and to
exclude constructions that are never found in English words.

16

The random word generator works by forming pronounceable sylla-
bles and concatenating them to form a word. Rules of pronounceability
are stored in a table for every unit and every pair of units. The
rules are used to determine whether a given unit is illegal or legal,
based on its position within the syllable and adjacent units. Most
rules and checks are syllable oriented and do not depend on anything
outside the current syllable. In a few cases checks do extend outside
the current syllable. These case are:

. Three identical consecutive units
Three consecutive vowel units
Silent "e" at the end of a word
"y" beginning a word

Certain illegal pairs of units

UV E=Z2WN =
P

17

SECTION III
IMPLEMENTATION DETAILS

The random word generator is organized as a main procedure that
references two tables and an external procedure. The user supplies
the two tables: a "unit" table that defines the units (such as those
listed on page 7) and specifies rules about each unit, and a "digram"
table that specifies rules about all possible pairs of such units.

The random_unit subroutine, which returns a random unit when called by
random_word_, must also be provided by the user. The method used by
this subroutine to generate the random units may be any method desired
and based on any distribution. Such a distribution might, for exam-
ple, be based on the frequency of use of the individual units in
English.

SPECIFICATION OF RULES

As mentioned in Section II, the random word generator uses two
types of rules: those that are fixed and embodied in the program
structure and those that are variable and embodied in external tables.
The fixed rules are general in that they are not specific to any one
letter or unit. The tables specify rules pertaining to individual
units or the juxtaposition of units. The tables will be discussed
first, followed by specification of the internal rules.

The Digram Table

This table contains one entry for every possible pair of units
(digram), whether that pair is allowed or not. Thus, with 34 differ-
ent units, there would be 1156 entries. The entry for each pair con-
sists of eight bits of information that together form the "rules" for
that particular digram. Each bit is a yes or no answer to a specifiec
question asked by the program. The name of each of these bits and the
questions answered are as follows:

1. must_begin Must this pair begin a syllable?
2. not_begin Is this pair prohibited from beginning a syllable?
3. break Is this pair illegal within a syllable (i.e. must it

be split between two syllables)?

18

b, prefix Must this pair be preceded by a vowel unit if it
does not begin a syllable?

5. suffix Must this pair be followed by a vowel unit if it
does not end a syllable?

6. end Must this pair end a syllable?
7. not_end Is this pair prohibited from ending a syllable?

8. illegal_pair Is this pair illegal (even if split between
syllables)?

Obviously all eight bits are inherently non-independent. There
are actually far fewer combinations of these eight bits that can be
specified. Out of these, less than sixteen combinations are ever used
in practice due to the structure of the English language. Thus, four
bits yielding 16 combinations would be enough. The actual internal
representation of these bits only affects speed and storage space,
however, and is not of importance in this discussion. In addition,
some other application of the random word generator (perhaps with a
different language) may use more combinations. Appendix I contains
the digram table currently in use for the 34 units defined on page T.

An example will best illustrate the usage of these bits. Consid-
er the digram table entry for the pair of units "f" and "1" as shown
in Appendix I. The bits that are set for "fl" are:

must_begin
suffix
not_end

The must_begin bit says that if an "fl" is encountered in a syllable,
it must begin that syllable. The suffix bit says that the unit fol-
lowing "f1" must be a vowel if "fl" is not the last pair in a sylla-
ble. The not_end bit says that "fl" may not be the last pair in a
syllable. The specification of the digram "fl1", thus, restricts its
use within a syllable as the first pair in one of the following six
contexts:

Elan.onim Fl€neny Tl o ag BLOwnary LG s GLYines
where ",.." signifies additional units within the syllable. Of
course, if there are any further restrictions on the use of the pairs
"la", "le", etc. that prevent them from appearing after the "f'",6 these

restrictions must be taken into account. Note that none of the eight
digram bits except illegal_pair apply when the pair is split between
two syllables. If "f1" is split, the "1" becomes the first unit of

19

the next syllable, and rules for pairs beginning with "1" must be ex-
amined. A quick glance at the digram table shows that all pairs be-
ginning with "1" have the not_begin bit set, except the six pairs:

la, le, 1i, lo, lu, and ly,
and processing can continue with this information.

The random word generator makes sure that at all times the rules
specified in the digram table are satisfied for every two consecutive
units in the word being formed.

The Unit Table

In addition to rules for unit pairs, there is a table containing
four bits of information pertaining to the individual units. For each
unit, the four bits are as follows.

1. not_begin_syllable

This bit indicates that this unit may not begin a syllable.
This bit is redundant in that the digram table can specify that all
possible pairs beginning with this unit may not begin a syllable.
The purpose for using this bit is for efficiency -- when generating
the first unit of a new syllable, the program would otherwise have
to search through all possible digrams beginning with this unit in
order to determine whether this unit is legal. This bit is cur-
rently set for the units "x" and "ck". A small number of words in
English do begin with "x", but they are mostly technical or scien-
tific terms.

2. no_final_split

This bit indicates that this unit, when appearing at the end
of a word, must not be the only vowel in the final syllable. This
bit is only set when the "vowel” bit is set, and is currently set
only for the unit "e".

3. vowel
This bit is set for vowel units. It is currently set for the
units: a, e, i, o, u, but may also be set for any units consisting

of vowel pairs or that are to be treated as vowels that one might
add to the table at some future time.

20

4, alternate_vowel

This bit indicates that this unit is to be treated as either a
vowel or a consonant, depending on context as discussed in Section
II of this report on page 9. This bit is set only for the unit

lly" .

Admittedly these four bits are highly specialized and at least
bits 2 and 4 could just as easily be incorporated into the program
logic as tests for specific units. However, the program actually
works with numbers representing units, rather than the units them-
selves, and the assignment of a particular number to a particular unit
is arbitrary. By using a bit in the unit table for all special cases,
all references to specific letters or units are removed from the pro-
gram, Refer to Appendix I for the unit table currently in use,

Random Units

As stated earlier, the random word generator requires the user to
supply the subroutine random_unit. This routine is called by the word
generator each time a random unit is needed. The random units are
generated based on some predetermined distribution. Of course, not
all units thus generated will be acceptable to the word generator in
every position of the word: random_unit will be repeatedly called un-
til an acceptable unit is returned. The actual distribution of legal
units is different for every position in a particular word, which, for
any unit, depends on the units that precede it and the digram and unit
tables. The random_unit subroutine itself makes no tests for legal
units, but merely uses its fixed distribution each time it is called.

The distribution of units that is currently in use along with the
digram and unit tables discussed earlier is shown in Appendix VI in
the description of the random_unit_ subroutine. There is another en-
try point in random unit called random_vowel, which is called by the
word generator for efficiency in cases when it is known that only a
vowel unit will be acceptable. The distribution of vowels returned by
this second entry is also shown.

The Algorithm

The digram table, the unit table, and the random_unit subroutine
are considered user-supplied in that they may be modified without af-
fecting the word generator program logic. The external rules were
specified in the two tables. The algorithm used to generate random
words based on these external rules defines the fixed internal rules,
The internal rules cannot be modified without changing the logic of
the algorithm. The complete algorithm is shown in Appendix II, writ-

21

ten in a PL/I-like language, and a high level flowchart is shown in
figure 1. Appendix III contains the source program listing of
random_word which implements this algorithm.

The function of the main body of the algorithm is to determine
whether a given unit, generated by random_unit, can be appended to the
end of the partial word formed so far. If illegal, the unit is dis-
carded and random_unit is called again. Once a unit is accepted, var-
ious state variables are updated and a unit for the next position in
the word is tried. A unit previously generated and accepted can never
be discarded.

The flowchart in figure 1 shows generally how a word is built up.
The names in all capitals (INDEX, SYLLABLE_LENGTH, etc.) are referen-
ces to variables initialized within the flowchart. Names in quotes
(e.g., "syllable_length") refer to the bits in the digram table or
unit table for the last pair of units or the current unit. The array
UNIT holds the units of the word as they are generated, where
UNIT(INDEX) is the current unit.

Beginning at the top of the flowchart, the first unit of the word
is selected at random by random_unit and inserted into UNIT(1). If
this unit is legal, according to rules in the unit table, the second
unit of the word is selected and loaded into UNIT(2). This time the
rules must be satisfied for both the unit table entry for UNIT(2) and
the digram table entry for the pair [UNIT(1),UNIT(2)]. If a given
unit is not acceptable, another is tried in its place. When the end
of the word is reached (as determined by the number of letters desired
by the caller of random_word_), additional checks are made before the
algorithm can terminate.

If the digram table is consistent, there should always bﬁ some
unit that will be legal for any legal state of the algorithm. How-~
ever, self-consistency checks on the digram table are extremely diffi-
cult to make. Therefore, an arbitrary limit of 100 tries is placed on
generating any particular unit. If 100 calls to random_unit fail to
yield a legal unit, the whole word is discarded and the program starts
over. This 100 tries 1limit is not explicitly shown in the flowchart
but is contained in the program text (see Appendix III).

Another observation concerning the 100 limit is that, because the
program is dealing with random events, it is theoretically possible
for 100 tries to fail to yield a legal unit even though there is a

4A "state" here is defined by the values of the state variables used
in the algorithm as given in Appendix II, and includes the units al-
ready accepted as part of the word being formed.

22

INDEX =1
SYLLABLE_LENGTH=I

I

by
[cati randam_unit |

Laok up unit inunit table
and get values af the 4 flags

e " [1}
) _ ;>—|y_.s< nat begin_syllable P
¢ SYLLABLEtENn%TH-I_ 0 I

Stare this unit in

UNIT (INDEX)
Y
es
(INDEX=17 D>
[L]

Laak up [UNIT(INDEX- 1}, UNIT (INDEX)]
in digram table and get 8 flags

[]
_______le_s_.< "illegal_pair" P >

y na

.____ﬁ(:srd cansecutive vawel? >

lna

Make miscellaneous tests
based on"begin", "not_begin",
“prefix"and "break”.

fail

pass

Determine it a new syllable must
be started based an "begin’,
“notbegin','end” "not_end","break”,

" " " "
vowel ,and a'ternate_vowel .

yes

[s this syilable split consistant
with the digram table entries
no for the previous pairs of units
EUNIT(INDEX-3),UNIT(INDEX—2)] and
UNIT (INDEX-2),UNIT(INDEX-1)] ?

yes

Set SYLLABLE_LENGTH to number
of units in new syllable— |

Increment INDEX
by length af unit

SYLLABLE_LENGTH=
SYLLABLE_LENGTH+I

}

B
{ Is this the end of the ward ?> g
y ves

. Make end of word tests based on
no_final_split , not_end and whether
we have acomplete syllable so far.

@ -

Figure 1. Random Word_ Flowchart

fail

23

unit that is legal. Thus, in order to prevent excessively long loops,
it is useful to place a limit on the number of tries, even though the
digram table may be consistent.

RESULTS

Appendix IV contains a printout of 2000 random words of five to
eight letters. The length of five to eight letters was chosen for
this run because such words are more pronounceable than longer words,
and fewer than five letters causes too many duplicates to be genera-
ted, thus making the words unsuitable for use as passwords. Actually
the random word generator has a capability of generating words of any
length. The words in the printout have been sorted alphabetically
merely as an aid to checking certain constructs. The possible rela-
tionships between successively generated words depend on the random
number generator in use, which is outside the scope of this discus-
sion.

Notice in the printout that alongside each word is the same word
divided into syllables (hyphenated). An interesting by-product of the
algorithm is the ability to determine syllable divisions in the word
generated. In certain cases the syllable split can not be precisely
defined. For example, the word "without” can be split as "with-out"
or "wi-thout" according to the rules. In such cases the random word
generator makes an arbitrary (but predetermined) choice of where to
split the syllables.

It may also be that certain hyphenations are not the most logical
as an aid to pronunciation. An example can again be found in
"without", which would be hyphenated as "wit-hout" if the "t" and "h"
were generated as individual units instead of as a "th" unit. The de-
cisions about hyphenation made by the program are built into the algo-
rithm and are based on what the author considers the most likely to be
acceptable in the general case.

24

SECTION IV
ANALYSIS

Of the two requirements of the random word generator stated on
page 3, the requirement of making the words "difficult to guess" was
stated as being easy to achieve by giving the word generator the capa-
bility of generating a very large set of words. The more difficult
requirement of pronounceability guided the design, and it was intui-
tively assumed that a large enough set of words to satisfy some cri-
terion of randomness would automatically result.

In this section an attempt is made to present some quantitative
measurements and statistics that may allow one to determine whether
the word generator is actually "random enough" in some sense. With a
tool as crucial to the security of the system as a password generator,
it must be assured that the passwords really are "difficult to guess".

There is no one quantity to be calculated that will provide a
meaningful description of the random word generator’s effectiveness in
all its possible applications. For example, in an application where
the random words are used to create identifiers of individuals, the
total number of possible words and the probability of duplication are
of interest. In the application as a Multics password generator, du-
plicates are not as important as the probability that a given user’s
password will be guessed by another user. For other applications
the probability distribution of the words might be required.

It is hoped that enough statistical data is provideu in this sec-
tion so that, with sufficient further analysis, most quantities of in-
terest can be calculated. A complete statistical analysis is beyond
the scope of this discussion. However, attention will be focused on
areas of interest to users of the random word generator as a password
generator for Multies.

51n Multics, it is of little value to know a password without know-
ing the name of the user to whom it belongs; i.e., one cannot login to
the system merely by typing a password and thereby impersonating who-
ever that password happened to belong to. Other systems may actually
use the password to identify rather than verify.

25

The following four topics have been chosen for consideration:

total number of different pronounceable words,
probability of a given word being generated,
most probable word, and

distribution of word probabilities.

Some quantitative measure of each of the above has been obtained, but
through empirical analysis of the random word generator’s output rath-
er than through an analysis of the algorithm. Analysis of the algo-
rithm would of course yield the most precise statistics, but the com-
plexity of the algorithm and its states, and the large amount of data
in the supporting tables (which might be subject to change by anyone),
make such an analysis extremely difficult and somewhat limited in ap-
plicability. 1Instead, minor modifications to the random word genera-
tor and some additional programs were incorporated to supply the data
necessary for this analysis. If a change is made in one of the
supporting tables, new data can be obtained merely by re-running these
additional programs.

It should be noted that all of the statisties and numerical fig-
ures presented in this section apply only when the tables are set up
as in Appendix I. The methods used to obtain the results, however,
apply to any tables the user may supply.

NUMBER OF WORDS

The number of possible random words, though extremely difficult
to determine by analyzing the algorithm, can be established to any de-
gree of accuracy in a fairly simple manner.

Consider all possible words of a given length L that can be
formed from the 26 letters of the alphabet, without regard to pro-
nounceability. If N is the number of such words, then

N = 26L. (1

Out of these, a certain fraction f are "pronounceable"™ according to
random word generator rules., The value of f may, of course, depend on
L. If we can determine f, we can calculate the number of pronounce-
able words n of a given length simply by

n = fN. (2)
An estimate for the value of f can be obtained by picking a ran-
dom subset of size m out of the N words, and finding out what fraction

of this subset is pronounceable. The larger the value of m, the

26

smaller the probable error we will have in our estimated value of f.
Actually the accuracy of our estimate can be expressed in terms of a
probability that its absolute error is less than a certain amount.

Generating a random subset of N words of length L is easy with a
uniform random number generator. With a small modification® the
random word generator can be given a particular word, and will "run
through its rules" to determine whether the word is legal (i.e., pro-
nounceable)., A sample run of 100,000 words of eight letters was made.
The length of eight letters was chosen for this run because that is
the maximum length of a user’s password acceptable to Multics. There
were 2653 acceptable words out of this run of 100,000, yielding an es-
timate for f of .02653. For eight letters,

N = 268 = 208,827,064,576 (3)
and the estimated value for n is
.02653N = 5.540 x 107, (4)
The accuracy of the estimate for f as determined above can be

calculated as a confidence interval for f. This confidence interval
is written approximately, for large m, in the form

(5)

where k is the number of acceptable words out of the sample of m, and
z is an appropriate percentage point of the standard ncrmal distribu-
tion., For example, we might be interested in a 95% confidence inter-
val, which corresponds to a value of z = 1.96. In the sample of
100,000 above, this yields

[.02653 + .00099] (6)

For other confidence regions, and for sample runs of words of differ-
ent lengths, see figure 2.

6The only change is to use a special version of the random_unit sub-
routine (which is user-supplied) that supplies units of a known word
rather than random units.

27

confidence number of words

word length range minimum maximum
99.9% 1.745x10§ 1.896x10$
99% 1.761x10 1.880x10
6 lebters: gog 1.770x10] 1.867x10"
90% 1.782x107 1.858x107
99.9% 5.191x103 5.889x103
99% 5.269x10 5.812x10
8 letters 454 5.331x10 5.787x107
90% 5.363x10% 5.714x107
99.9% 1.u6ux101§ 1.79ux1o}§
99% 1.499x10 1.759x10
10 Sekterst opy 1-535x101§ 1.735x101§
90% 1.546x1012 1.712x10]

Figure 2. Number of Words of 6, 8 and 10 Letters

PROBABILITY OF A WORD

The words produced by the random word generator are not all
equal ly probable for two reasons. First, different units have differ-
ent probabilities of being generated by random_unit. Second, not all
units thus generated are always acceptable. The probability of a giv-
en word must be calculated by examining the conditional probabilities
of the individual units in that word.

Since random words are created left to right, at a given point
during the creation of a word the units accepted so far determine
which units may follow. Thus the probability of a particular unit ap-
pearing in a particular position of a word is the ratio of that unit’s
probability (of being returned by random unit) to the total probabili-
ty of all the units that are legal in that position. This calculation
can be made for each unit based only on the units that precede it. 1In
order to calculate the probability of a particular word, the probabil-
ities of the individual units in that word are determined in this man-
ner and then multiplied together.7

7The 100-try limit discussed on page 15 may cause entire words to be
rejected even though some units were accepted. However, test runs
have shown that the 100-try limit is almost never reached.

28

The method described above works because, for each position of
the word, the random word generator keeps trying random units until a
legal unit is found. The unacceptable units play no part in the prob-
ability that a particular legal unit will appear. For example,
suppose in a given position of a particular word the only legal units
are "e" and "a", If it is known that the probability of "e" appearing
at random is ,057, and the probability of "a" is .047, then the proba-
bility that the unit will be an "e"™ is .057/(.057+.047).

Since the random word generator does not throw out a unit once it
has been accepted, it is merely necessary to multiply the individual
conditional unit probabilities together to arrive at the probability
of the word. Note that this probability only applies to words of a
given length (i.e., the length of the word whose probability is calcu-
lated). The random word generator does not pick a length, but is
asked to generate a word of a specified length. If random lengths are
supplied to the random word generator, the distribution of these ran-
dom lengths must be figured into the probability of the word calculat-
ed.

The special program described in the previous subsection that
"gives" the random word generator known words was modified to calcu-
late the probability of the kngwn word in the manner described. The
answer is exact in most cases,” and the method will work regardless
of the definition of the units, the tables, or the nature of the algo-
rithm. The only restriction is that the word generator not discard
units that have already been accepted in a given position of a word,
and that the distribution of the units returned by random_unit remain
constant during the formation of the word.

MOST PROBABLE WORD
The "most probable" word (or words) and its probability as deter-

mined in the above manner is meaningful to those interested in the
difficulty of guessing random words. In the password application, for

8Some words can be divided into units in one of two ways. For exam-
ple, "w-i-t-h-o-u-t" and "w-i-th-o-u-t" are two ways of specifying the
units of "without", both of which are legal. An exact calculation of
the probability of this word would require adding the probabilities of
both forms. In general, however, the probability of the version that
contains more units (i.e., "w-i-t-h-o-u-t") is much lower because of
the extra unit, and thus makes little difference in the total proba-
bility of the word. 1In calculating probabilities of words containing
two-letter units that may possibly be split into two one-letter units
the calculation is based on the word with the two-letter units.

29

example, it does not matter if there are one billion random words if
the most probable word has a probability as high as 50% (even though
the probability of all other words may be small)., A systematic method
for guessing a particular user’s password would be to first try the
most probable word and work down from there. If the first word tried
has a high probability, a large set of legal words is of little value.

As important as this statistic is, it appears that only an ex-
tremely complex analysis will yield the most probable word. The obvi-
ous method of selecting only the most probable units to form a proba-
ble word does not work. For example, two of the most probable units
are "e" and "t". One might expect that the most probable six letter
word is something like "teetee". Actually, a word like "heehee" is
almost twice as probable. A simple calculation can show that the
first two units of a word are much more likely to be "he" than "te".
Zven though "t" has twice the probability of being first, the set of
legal units following "t" is greater than the set of units following
"h", It turns out that with the tables in use there are only six
units that may follow "h", whereas there are eight that may follow
"t", The probability that one of those six will be "e" is fairly
high. The low probability of "h" mutiplied by the high probabiligy of
"e" yields a value greater than the probability of the pair "te".

An empirical approach to arriving at the most probable word might
be to generate a large number of random words and to calculate their
probabilities. Unfortunately, even the most probable word may have a
probability sufficiently low so that millions of words might be gener-
ated before the most probable word appears. Moreover, one would have
no assurance that any particular word really is the most probable.

Once more, intuition and a "feeling" of the rules and restric-
tions of the algorithm were relied upon. The utility programs previ-
ously described made it easy to try many expected high-probability
words manually. In this way, a guess of the highest probability words
of 6, 7, 8 and 10 letters has been made. The words are listed below,
along with their probabilities. There may actually be several words
of each length with the same probability. The results below only ap-
ply if the specific digram and unit tables listed in Appendix I are
used, and if the distribution of the units is as listed in that appen-
dix.

9One should also consider that the use of two-letter units increases
the probability of certain words. The six-letter word "quequo" is an
order of magnitude more probable that "teetee", because it actually
only contains four units (qu-e-qu-o0), even though the probability of
"qu" coming from the random unit is very low.

30

quethe 2.45x106 408,000
squequo 1.64x10™7 6,098,000
queshquo 2.19)(10'8 45,662,000
queshquesh 1.81x10~19 5,525, 000,000

The probabilities above only apply to words of the specific length
shown. For example, if the word generator is asked to generate words
of a random length of 6, 7 or 8 letters, and each length is equally
likely, then the probabilities above are multiplied by 1/3. Of
course, the probability of the six letter word is so high that the
other two words are of little interest if six letter words are al-
lowed.

DISTRIBUTION OF PROBABILITIES

The ability to calculate the probability of a given word, and the
total number of words allows us to arrive at an approximate distribu-
tion of the probabilities of the pronounceable words, from most proba-
ble to least probable. This distribution yields a kind of profile of
the word generator that may be the best overall measure of the word
generator’s effectiveness. One method of arriving at such a distribu-
tion is outlined below. As with the number of words, the accuracy of
the distribution curve depends on the size of the sample of random
words used.

Assume that all n pronounceable words of length L are listed in
order of probability, and that a "word number" x, 0 running from 1
to n, is assigned to each word, where x = 1 for the most probable
word. Let p(x) be the probability of word x. If we had all n words,
we could plot x against p(x) as in figure 3 to obtain a series of
points. The distribution p(x) will be loosely referred to as a
"curve" although strictly it is not a continuous function. Of course,
p(x) is monotonically non-increasing by definition. The area under

10The letter "x" has been chosen for the word number instead of the
more obvious choice of "i" to represent an integer in order to be more
consistent with the notation generally used for some of the calcula-
tions in the following pages that treat x as a continuous variable.

31

LA—-45,67I

the curve is unity, or more precisely

n

Z p(x) = 1. T

'x=1

Once the curve is obtained, quantities like the total probability of
the m most probable words, the probability of duplicates within a cer-

tain number of tries, etc., can be calculated or measured from a graph
of the curve.

P(x)

Figure 3. Distribution of Probabilities of Random Words

Determination of Distribution

If all n pronounceable words (and probabilities) were available,
producing p(x) exactly would be no problem. In reality, we can only
obtain a certain fraction of the n words. If we could in some way se-
lect every millionth word in the ordered list of n words, we could

32

still estimate a curve of p(x) by merely plotting every millionth
point in figure 3 and interpolating to get the values in between. The
accuracy of such a plot will depend on the "smoothness" of p(x) in
some sense (and of course on the method used to make the interpola-
tion).

There is no direct way to arrive at every millionth word in the
list. We can generate k random words but we have no way of knowing
what their positions are in the list (i.e., their values of x). In
fact, 1f we generate k random words, their values of x will not be
evenly distributed in the interval [1, n], but will be weighted to-
wards the lower end since the words of higher probability are more
likely to appear at random. It is possible, however, to pick a random
subset of the n words that is evenly distributed in the interval.

The uniform random word generator discussed near the top of page
21 can be used to provide a large enough set of equally likely random
words so that the desired number k of these will be pronounceable.
The k words thus obtained can be assumed to be equally spaced in the
interval [1, n] because they were arrived at in a manner totally inde-
pendent of their probabilities., That is to say, the least probable of
the k words has just as high a probability of appearing (using the
uniform generator) as does the most probable word.

An approximate graph of p(x) was obtained by taking the 2653 pro-
nounceable words used to estimate the value of n in (4) and ordering
them according to probability.. Each word was assigned an index i,

S L 2l a o ey 0k, (8)

where i = 1 for the most probable of these words. For each word, the
position on the x-axis was determined by

in
x(1) = —==m-. (9)
k + 1
A plot of the probabilities of the 2653 words is shown in figure 4.

Application of the Distribution

Figure 4 is a complete profile of the word generator and it can
be used to measure various quantities. For example, the total proba-
bility of the m most probable words is simply the area under the curve
from x = 0 to x = m., The number of words that make up any given frac-
tion of the population can also easily be measured.

Remember that in figure 4 the value of x is actually the "word

33

107

MOST
PROBABLE

2.19x10°8 |-

108

G
— 1070
a
>.
=
-l
@
3
o io—”
3
a
1072
i
x(i)
1x10° 2x10° 3x10° 4x10° 5x10°
To gbad 1 P 1 Ly 1 o o 1 h 1
i 200 400 600 800 000 1200 1400 1600 800 2000 2200 2400 2600
2 WORD NUMBER i
©0
o
<
@
-
Figure 4. Distribution of Probabilities of 2653 Eight Letter Words

34

number" where x = 1 for the most probable word and x = n for the least
probable. The value of x(i) for i = 1 in our sample of 2653 pro-
nounceable words has a value of approximately 2,000,000 as calculated
by (9). The most probable eight letter word out of the entire popula-
tion is of course at x = 1. If we can believe for a moment that fig-
ure 4 is an exact representation, we can enlarge the extreme leftmost
end of the curve where x is small as in figure 5, and extrapolate to
the left of the point at x = 2,000,000 to double check the determina-
tion of the most probable word on page 25. Of course this extrapola-
tion is not mathematically valid since there is no sound basis for as-
suming that the curve continues in any specific pattern. However, it
does appear that extrapolation yields a value of the most probable
word very close to that obtained by trial and error.

Another check on the distribution curve can be made by measuring
the area under the curve. 1In order to approximately calculate this
area, Simpson’s rule was used where the first point (at x = 1) was as-
sumed to be the most probable word as previously determined, and suc-
cessive points are at intervals of n/2654. The area thus calculated
came out to 1.006, only 0.6% off the expected value of 1.000.

Figures 4 and 5 apply only to a specific sample run for eight
letter words. Appendix V presents similar data for six and ten letter
words as a comparison. Of course, a different digram table or unit
table would greatly change these distributions.

AN ALTERNATIVE METHOD

The main difficulty in the analysis of the random word generator
lies in the complexity of the algorithm. The nature of the algorithm
is such that a highly asymmetric distribution of probabilities of
words results, with some words being many orders of magnitude more
probable than others. The goal of the preceding analysis was to pro-
vide information as to the shape of the probability distribution curve
so that the word generator’s suitability for any particular applica-
tion could be examined.

In its application as a Multics password generator, the results
of figure 4 may indicate that the word generator is not suitable for
passwords due to the high probability of the words at the leftmost end
of the curve. Some instal%ations may need passwords that have a prob-
ability less than 2.19x107Y. It is possible to improve this proba-
bility by changing the digram and unit tables and the distribution of
the units returned by the random_unit_ subroutine, but it is very dif-
ficult to anticipate the effect of any particular change on the proba-
bility distribution., Once the change is made in the tables, there is
no easy way to determine what the most probable word actually is.

35

2.19x10°

G
e
»
—d
o
>
=
=
oe]
bat
%
(2]
n
~
"3
i
[e0]
—

P EXTRAPOLATION

T

x (i)

1xi0® 2xi0®
L I S I I O N N N S S SO A B O B A B AR B I A
IR rrrrrr1rrrrr e T T Trrbl
0 10 20 30 40 50 60 70 80 90 110 120 130 140 150

WORD NUMBER i

Figure 5. Enlarged Left Edge of Distribution

36

There is an alternative method, however, that can be employed without
changing any of the tables, that yields a distribution that is much
easier to determine.

In order to illustrate this alternative method, assume that we
wish to improve the word generator’s distribution so that no word is
more probable than a word composed of six random letters. This exam-
ple was chosen because the six random letter criterion for passwords
is applied to several systems in use today. This criterion translates
to a maximum probability of

1
-=z = 3.24 x 1079 (10)
26

for any word. The most probagle eight letter word shown on page 25
has a probability of 2.19x107" -- too high by a factor of seven, and
Multics does not allow (nor would it be desirable considering the re-
memberability requirement) passwords longer than eight characters.
Note, however, that the total number of pronounceable eight letter
words from equation (4) is much greater than the total number of ran-
dom six letter words. Thus, if there were some way to force the word
generator to generate all n pronounceable words with equal probabili-
ty, then the probability of any particular word would be 1/n and the
analysis would be trivial.

By utilizing the random word generator in a slightly different
way, at an additional cost in overhead, it is possible to force the
probabilities of all words to be equal without changing the total num-
ber of words. Consider the method used to obtain the estimated value
of n in equation (4). This value was obtained by generating words at
random such that all eight letter words are equally likely, and com-
puting the fraction of those that were pronounceable. A method for
generating equally probable pronounceable words, then, is to generate
equally likely random words and test them for pronounceability until
an acceptable word turns up. All acceptable words thus generated are
equally probable, and the randomness criterion is satisfied. Appendix
VII contains the source code and the documentation for the two program
modules that have been altered in order to optionally produce uniform-
ly distributed random words. In addition, for those interested, a
listing of the Multics encipher_ subroutine is included. This is the
subroutine used to generate random numbers,

The question that arises is whether this "sampling" method is
feasible considering the possible additional computer time required
for testing and rejecting words. The answer depends on the fraction
of words that are accepted, and whether it is more or less expensive

37

to test a word for pronounceability rather than to generate it.

The fraction of pronounceable words was determined on page 21 for
eight letter words using specific digram and unit tables. The value
.02653 is an acceptance ratio of approximately 1 in 37. Thus we would
expect, on the average, to make 37 tries before getting an acceptable
word.

The time required to generate pronounceable eight letter words
with the word generator is somewhat greater than the time required to
generate a word at random and to test its pronounceability. This is
because the word generator does not accept every unit supplied to it
by random_unit in the word being formed, whereas all units of a pro-
nounceable word to be tested are immediately accepted. The time re-
quired to test an unpronounceable word is usually less than the time
required to test a pronounceable word because the whole word is rejec-
ted as soon as an illegal unit is encountered. If we expect, on the
average, to make 37 tries to find a pronounceable word, we would ex-
pect the time required to do this to be no more 37 times that required
to generate one pronounceable word. This is born out by empirical ev-
idence indicating that the average time required to find a pronounce-
able eight letter word by trial and error is about 10 times that re-
quired to generate one pronounceable word. In Multies computer time,
the figures are about .10 second and .01 second per word respec-
tively.

Since the number of pronounceable words is much greater (by a
factor of 18) than that required to fulfill the six random letter cri-
terion, it may be possible to significantly increase the pronouncea-
bility of words generated by modifying the tables to yield a smaller
set of possible words. Consider the possible results if, for example,
one could delete 17 out of every 18 words in the list in Appendix IV
and save only the most pronounceable ones. Of course, by restricting
the rules further, the "acceptance ratio™ of 1 in 37 is decreased,
thereby resulting in additional time spent finding a pronounceable
word. A decrease by a factor of 18 will increase the average time of
.10 seconds for finding a pronounceable eight letter word to several
seconds. This may not be tolerable for some installations.

Thus, particularly when employing the alternative sampling method
for generating pronounceable words, one must weigh the advantages of

11The time of .10 second for the sampling method was obtained by
using a modified version of the random word generator that discards a
partial word and starts over any time a unit is rejected. 1In this way
extra (possibly unused) units are not generated as in the case when a
whole random word is first created before testing.

38

pronounceability against overhead in computer time in determining what
modifications to make to the tables. The advantage of using the sam-
pling method is that the only statistical quantity to be determined,

the total number of words, is fairly easily estimated. The effect of
a change in the digram table on this estimate can be quickly examined.

39

SECTION V
CONCLUSION
EVALUATION

The random word generator described in this report has been suc-
cessfully implemented and demonstrated on the Multics system. The
list of 2000 random words contained in Appendix IV was shown to vari-
ous people, and it became apparent that the degree to which words are
considered pronounceable varies a great deal among individuals. Some
people had many more complaints than others about particular words.

n most cases, complaints were about words containing certain combina-
tions of units that the individual did not consider to be "legal".

For the most part, combinations considered illegal could be di-
rectly eliminated using the rules of the digram table. In other much
less frequent cases, eliminating the offending construct was either
impossible or would result in eliminating many more constructs that
should be legal. As mentioned earlier, there were many fewer com-
plaints about the shorter words of four to six letters than about the
longer ones.

The statistics discussed in Section IV and Appendix V, if pre-
senting an unsatisfactory performance for a particular application,
can be improved by modifying the digram table and unit table or by al-
tering the manner in which the random word generator is utilized as
discussed near the end of Section IV. For example, by eliminating all
double-letter units, the most probable word will have a much lower
probability than that indicated on page 25. This is done, however, at
the cost of a reduction in the total number of different words. Or,
at an increase in overhead, the alternative method for generating
words discussed on page 29 can be employed. By modifying the rules in
the digram table, particular statistical properties can be adjusted,
but one must be aware of the interrelationships between the various
properties and performance features before changing the tables to
achieve a given result.

In conclusion it appears that the tables that are input to the
word generator and the manner in which it is used could be tailored
for almost any application, whether the main interest is in pronounce-
ability or performance.

40

OTHER APPLICATIONS

Pronounceability and randomness were the primary goals of the
word generator in its use for generating random words. However, the
support program discussed in Section IV that gives the word generator
a word to be tried, combined with the word generator’s ability to di-
vide a word into syllables, partially supports the facility of a gen-
eral purpose word hyphenator for text processing. The random word
generator can be given any word for hyphenation. If the word is ac-
cepted, the word will be returned hyphenated into syllables just as if
it had been randomly generated. If rejected, the word is illegal ac-
cording to random word generator rules and the tables. Of course, the
hyphenation will not always be the "right" _gne according to the dic-
tionary, but exceptions are apt to be few. Perhaps some pre- or
post-processing, combined with a list or dictionary of exceptional
constructs, can yield a word hyphenator of general utility.

12An example of a common exception is found in words containing
"tion", which is hyphenated "ti-on"™ as two syllables. This and many
other problems could be avoided by defining new kinds of double letter
units and changing the tables. Such modifications may make the word
generator unsuitable for generating random words because many unpro-
nounceable words may be considered legal. However, when used as a hy-
phenator the legality of a word is of no concern.

41

APPENDIX I

TABLES

The following pages list the unit table and digram table as de-
scribed in Section III. The unit table appears first. Each entry in
the unit table has the following format:

where:

o]

N < X =

n Ccc WXyz

is a unit number (1 to 34).

is the unit (1 or 2 letters).

is 0 or 1, representing the value of "not_begin_syllable".
is the value of "no_final_split".

is "vowel",

is "alternate_vowel",

The digram table follows, with each entry of the following format:

where:

Qo

cc

abd-cc+ef

is 0 or 1, which is the value of "begin".

is "not_begin".

is "break".

appears if "prefix" is set, otherwise blank.
is a pair of units (2, 3, or U letters).

appears if "illegal_pair" is set., If it is "-", that means
"suffix" is set. Otherwise it is blank.
is "end".

is "not_end".

43

W OO0 EZTWN -
H R 00O Q00T

0010
0000
0000
0000
0110
0000
0000
0000
0010

10
1R
12
13
14
15
16
17
18

w"3oT OB H+HXO

The Unit Table

0000
0000
0000
0000
0000
0010
0000
0000
0000

4t

19
20
21
22
23
24
25
26
27

0000
0010
0000
0000
1000
0001
0000
ch 0000
gh 0000

N X & < C cr

28
29
30
31
32
33
34

ph
rh
sh
th
wh
qu
ck

0000
0000
0000
0000
0000
0000
1000

The Digram Table

000 aa +00 011 bm 01 011 cz O1 000 ec 00 000 fo 00
000 ab 00 011 bn 01 000 cch+00 000 ed 00 011 fp 01
000 ac 00 000 bo 00 000 cgh+00 000 ee 00 100 fr 01
000 ad 00 011 bp 01 011 eph 01 000 ef 00 010 fs 00
000 ae +00 100 br 01 000 crh+00 000 eg 00 010 ft 00
000 af 00 010 bs 00 011 esh 01 011 eh 01 000 fu 00
000 ag 00 011 bt 01 011 cth 01 000 ei 01 011 fv 01
011 ah 01 000 bu 00 000 cwh+00 000 ej 00 011 fw 01
000 ai 00 011 bv 01 010 cqu-01 000 ek 00 000 fx +00
000 aj 00 011 bw 01 000 cck+00 000 el 00 010 fy 00
000 ak 00 000 bx +00 000 da 00 000 em 00 011 fz 01
000 al 00 000 by 00 011 db 01 000 en 00 011 fch 01
000 am 00 011 bz 01 011 de 01 001 eo 00 011 fgh 01
000 an 00 011 bch 01 010 dd 00 000 ep 00 011 fph 01
000 ao +00 000 bgh+00 000 de 00 000 er 00 000 frh+00
000 ap 00 011 bph 01 011 df 01 000 es 00 011 fsh 01
000 ar 00 000 brh+00 011 dg 01 000 et 00 011 fth 01
000 as 00 011 bsh 01 011 dh 01 000 eu 00 000 fwh+00
000 at 00 011 bth 01 000 di 00 000 ev 00 011 fqu 01
000 au 00 000 bwh+00O 011 dj 01 000 ew 00 000 fck+00
000 av 00 011 bgu 01 011 dk 01 000 ex 00 000 ga 00
000 "aw 00 000 bck+00 011 dl1 01 000 ey 00 011 gb 01
000 ax 00 000 ca 00 011 dm O1 000 ez 00 011 gc 01
000 ay 00 011 cb 01 011 dn 01 000 ech 00 011 gd 01
000 az 00 011 cc 01 000 do 00 011 egh 01 000 ge 00
000 ach 00 011 ed 01 011 dp 01 000 eph 00 011 gf 01
000 agh+00 000 ce 00 100 dr 01 000 erh+00 010 gg 00
000 aph 00 011 cf 01 010 ds 10 000 esh 00 011 gh 01
000 arh+00 011 cg 01 011 dt 01 000 eth 00 000 gi 00
000 ash 00 011 ch 01 000 du 00 000 ewh+00 011 gj 01
000 ath 00 000 ci 0O 011 dv 01 001 equ 01 000 gk +00
000 awh+00 011 ¢j 01 011 dw 01 000 eck 00 100 gl -01
001 aqu 01 011 ck 01 000 dx +00 000 fa 00 011 gm 01
000 ack 00 000 cl -01 000 dy 00 011 fb 01 011 gn 01
000 ba 00 011 cm 01 011 dz 01 011 fec 01 000 go 00
011 bb 01 011 cn 01 011 dch 01 011 fd 01 011 gp 01
011 be 01 000 co 00 011 dgh 01 000 fe 00 100 gr 01
011 bd 01 011 ecp 01 011 dph 01 010 ff 00 010 gs 10
000 be 00 000 cr O1 000 drh+00 011 fg 01 011 gt 01
011 bf 01 010 es 10 010 dsh 01 011 fh 01 000 gu 00
011 bg 01 010- ¢t 00 010- dth 00 000 fi 00 011 gv 01
011 bh 01 000 cu 00 000 dwh+00 011 fj 01 011 gw 01
000 bi 00 011 ecv 01 011 dqu 01 011 fk 01 000 gx +00
011 bj 01 011 cw 01 000 dck+00 100 f1 -01 010 gy 00
011 bk 01 000 c¢x +00 000 ea OO0 011 fm 01 011 gz 01
100 bl -01 000 cy 00 000 eb 00 011 fn 01 011 gch 01

45

000
011
000
010
010
000
01
000
000
01
011
011
000
011
011
000
000
011
011
011
011
011
000
011
011
011
011
000
011
011
000
000
011
01
011
011
000
011
011
000
01
000
011
000
000
000
010
000

ggh+00
gph 01
grh+00
gsh 00
gth 00
gwh+00
gqu 01
geck+00
ha 00
hb 01
he 01
hd 01
he 00
hf 01
hg 01
hh +00
hi 00
hj 01
hk 01
hl 01
hm 01
hn 01
ho 00

~hp 01

hr 01
hs 01
ht 01
hu 00
hv 01
hw 01
hx +00
hy 00
hz 01
heh 01
hgh 01
hph 01
hrh+00
hsh 01
hth 01
hwh+00
hqu 01
hck+00
ia 00
ib 00
iec 00
id 00
ie 00
if 00

000
011
000
000
000
000
000
000
001
000
000
000
000
011
000
011
000
011
000
000
010
000
000
000
000
000
001
000
000
011
011
011
000
011
000
011
000
000
011
011
011
011
000
011
011
011
011
000

ig
ih
ii
ij
ik
il
im
in
io
ip
ir
is
it
iu
iv
iw
ix
iy
iz

00
01
+00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
01
00

ich 00
igh 00
iph 00
irh+00
ish 00
ith 00
iwh+00
iqu 01
iek 00

Jja
jb
Jje
jd
je
jf
jg
Jjh
jat
3J
Jjk
jl
Jjm
jn
jo
Jp
R
js
jt
ju

00
01
01
01
00
01
+00
01
00
+00
01
01
01
01
00
01
01
01
01
00

011
011
000
010
011
011
011
011
000
011
011
000
011
000
000
011
011
011
000
011
011
011
000
011
011
000
011
100
000
011
000
010
011
000
011
011
000
010
011
011
011
010
000
010
011
000
011
000

46

jv
Jw
jx
Jy
jz

01
01
+00
00
01

jeh 01
jgh 01
jph 01
jrh+00
jsh 01
jth 01
jwh+00
jqu 01
Jjek+00

ka
kb
ke
kd
ke
kf
kg
kh
ki
kj
kk
kl
km
kn
ko
kp
kr
ks
kt
ku
kv
kw
kx
Ky
kz

keh 01

00
01
01
01
00
01
01
01
00
01
01
=01
01
=01
00
01
=01
10
01
00
01
01
+00
00
01

kgh 01
kph 00
krh+00
ksh 00
kth 01
kwh+00
kqu 01
kck+00

000
010-
011
010-
000
010~
010-
0on
000
010-
010-
010-
010-
011
000
010-
011
010
010-
000
010-
011
000
000
011
010-
01
010-
000
010-
010-
000
011
000
000
011
011
011
000
011
011
011
000
011
011
011
010
011

la
1b
lc
1d
le
1f
1g
lh
1i
1j
1k
11!
1m
1n
lo
lp
Ir
1s
1t
lu
lv
1w
1x
ly
1z

00
00
01
00
00
00
00
01
00
00
00
00
00
01
00
00
01
00
00
00
00
01
+00
00
01

lch 00
lgh 01
lph 00
1rh+00
1sh 00
1th 00
1wh+00
lqu 01
lck+00

ma
mb
me
md
me
mf
mg
mh
mi
mj
mk
ml
mm
mn

00
01
01
01
00
01
01
01
00
01
01
01
00
01

000 mo
010 mp
011 mr
010 ms
010 mt
000 mu
011 mv
011 mw
000 mx
000 my
011 mz

00
00
01
00
00
00
01
01
+00
00
01

010- mch 00
011 mgh 01
010 mph 00
000 mrh+00
010 msh 00
010 mth 00
000 mwh+00
011 mqu 01
000 mck+00

000 na
011 nb
011 nc
010 nd
000 ne
011 nf
010- ng
011 nh
000 ni
011 nj
010- nk
011 nl
011 nm
010 nn
000 no
011 np
011 nr
010 ns
010 nt
000 nu
011 nv
011 nw
000 nx
010 ny
011 nz

00
01
01
00
00
01
00
01
00
01
00
01
01
00
00
01
01
00
00
00
01
01
+00
00
01

010- nch 00
011 ngh 01
010- nph 00

000
010
010
000
011
010~
000
000
000
000
000
000
000
011
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
010
000
000
000
000
000
001
000
000
011
011
011
000
0N
011
011

nrh+00
nsh 00
nth 00
nwh+00
nqu 01
nck 00
oa 00
ob 00
oc 00
od 00
oe +00
of 00
og 00
oh 01
oi 00
oj 00
ok 00
ol 00
om 00
on 00
oo 00
op 00
or 00
os 00
ot 00
ou 00
ov 00
ow 00
ox 00
oy 00
oz 00
och 00
ogh 00
oph 00
orh+00
osh 00
oth 00
owh+00
oqu 01
ock 00
pa 00
pb 01
pc 01
pd 01
pe 00
pf 01
pg 01
ph 01

000
011
011
000
011
01
000
010-
000
010
010
000
011
011
000
000
011
011
011
011
000
011
011
000
011
000
000
010-
010-
010-
000
010-
010-
011
000
010-
010-
010-
010-
010-
000
010-
010-
010-
010-
000
010-
011

pi
pJ
pk
pl
pm
pn
po
pp
pr
ps
pt
pu
pVv
pw
pPXx
Py
Pz

00
01
01
-01
01
01
00
00
01
10
10
00
01
01
+00
00
01

pch 01
pgh 01
pph 01
prh+00
psh 01
pth 01
pwh+00
pqu 01
pck+00

ra
rb
rec
rd
re
rf
rg
rh
gk
rj
rk
rl
rm
rn
ro
rp
rr
rs
rt
ru
rv

00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
01

000
000
010-
010-
011
010-
000
010-
010-
000
010-
010-
000
011
000
011
000
011
011
011
000
011
000
100
000
000-
000
000
010
010-
000
000
011
100
000
000
011
100
011
o
000
011
011
000
000
010
000
011

47

rx

ry
rz

+00
00
00

rch 00
rgh 01
rph 00
rrh+00
rsh 00
rth 00
rwh+00
rqu 01
rck 00

sa
sb
sc
sd
se
sf
Sg
sh
si
sJ
sk
sl
sm
sn
so
sp
sr
ss
st
su
sv
SwW
sX
sy
sz

00
01
01
01
00
01
01
01
00
01
00
-01
-01
-01
00
00
01
00
00
00
01
-01
+00
00
01

sch-01
sgh 01
sph 01
srh+00
ssh 01
sth 01
swh+00
squ-01
sck 00

ta
tb

00
01

011
011
000
011
011
01
000
011
011
011
011
011
000
011
000
010
010-
000
011
100
000
000
011
010
011
010
000
010
011
000
011
000
011
000
000
000
010
000
000
011
01
000
000
000
000
000
011
000

te
td
te
tf
tg
th
ti
tJ
tk
tl
tm
tn
to
tp
tr
ts
tt
tu
tv
tw
tx
ty
tz

01
01
00
01
01
01
00
01
01
01
01
01
00
01
01
10
00
00
01
-01
+00
00
01

tch 00
tgh 01
+ph 10
trh+00
tsh 10
tth 01
twh+00
tqu 01
tck+00

ua
ub
uc
ud
ue
uf
ug
uh
ui
uj
uk
ul
um
un
uo

up

01
00
00
00
00
00
00
01
01
00
00
00
00
00
00
00

000
000
000
000
000
01
000
011
000
000
010-
000
000
000
000
000
001
000
000
011
011
011
000
011
011
011
000
011
011
011
011
011
000
011
01
011
011
000
011
011
000
010
011
011
011
01
000
011

ur
us
ut

00
00
00

uu +00

uv
uw
ux
uy
uz

00
01
00
01
00

uch 00
ugh 00
uph 00
urh+00
ush 00
uth 00
uwh+00
uqu 01
uck 00

va
vb
ve
vd
ve
vf
vg
vh
vi
v
vk
vl
vm
vn
vo
vp
vr
Vs
vt
vu
vV
vw
VX
vy
vz

00
01
01
01
00
01
01
01
00
01
01
01
01
01
00
01
01
01
01
00
01
01
+00
00
01

veh 01
vgh 01
vph 01
vrh+00
vsh 01

011
000
01
000
000
010~
o
010-
000
010~
010~
o
000
011
010-
010~
010-
010~
000
010-
100
010~
010~
000
010-
011
010~
000
010-
010
01
010
000
010
010
000
0
010
010
011
011
011
010
011
011
011
010
011

vth 01
vwh+00
vqu 01
vek+00

wa
wb
we
wd
we
wl
wg
wh
wi
LA
wk
wl
Wi
wn
WO
wp
wr
WS
wt
wu
WV
WW
wX
Wy
wZ

00
00
01
10
00
00
10
01
00
01
00
-00
00
00
00
00
=01
00
00
00
00
01
00
00
00

weh 00
wgh 01
wph 00
wrh+00
wsh 00
wth 00
wWwh+00
wqu 01
wck 00

xa
xb
Xec
xd
xe
xf
Xg
xXh
xi

xJ

00
01
01
01
00
01
01
01
00
01

011
011
011
011
010
011
011
011
011
010
oM

011°

000
010
011
011
011
011
000
o1
011
000
011
000
000
v
010
010
o010
000
010
010
011
100
010
010
010
010
010
000
010
011
010
010
000
010
011
010
000

xk
x1
Xm
Xn
X0
Xp
Xr
Xs
xt
Xu
XV
Xw
XX
Xy
XZ

01
01
01
01
00
01
01
01
01
00
01
01
+00
00
01

xch 01
xgh 01
xph 01
xrh+00
xsh 01
xth 01
xwh+00
xqu 01
xck+00

ya
yb
ye
yd
ye
yf
yg
yh
yi
¥l
vk
yl
ym
yn
yo
yp
yr
ys
yt
yu
yv
ywW
yX

00
00
01
00
00
01
00
01
01
01
00
01
00
00
00
00
01
00
00
00
01
01
00

yy +00

010
011
011
011
000
011
011
000
011
000
000
011
011
o1
000
011
011
011
000
011
011
011
011
011
000
011
010
011
010
000
011
000
000
000
010
011
011
011
000
011
011
000
011
000
000
011
oM
011

[¢]
(o]
(o]
[¢]

48

yz 00
ych 01
ygh 01
yph 01
yrh+00
ysh 01
yth 01
ywh+00
yqu 01
yck+00
za 00
zb 01
zc 01
zd 01
ze 00
zf 01
zg 01
zh 01
zi 00
zj 01
zk 01
zl 01
zm 01
zn 01
zo 00
zp 01
zr 01
zs 01
zt 00
zu 00
zv 01
zw =01
zx +00
zy 00
zz 00
zch 01
zgh 01
zph 01
zrh+00
zsh 01
zth 01
zZwh+00
zqu 01
zck+00
ha 00
hb 01
he 01
hd 01

000
011
011
011
000
011
011
011
011
011
000
011
000
011
011
000
011
010
000
000
011
000
011
011
000
011
011
000
011
000
000

che
chf
chg
chh
chi
chj
chk
chl
chm
chn
cho
chp
chr
chs
cht
chu
chv
chw
chx
chy
chz

00
01
C1
01
00
01
01
01
01
01
00
01
01
01
01
00
01
01
+00
00
01

chch+00
chgh 01
chph 01
chrh+00
chsh 01
chth 01
chwh+00
chqu 01
chek+00

gha

011-ghb
011-ghe
011-ghd

000

ghe

011-ghf
011-ghg
011-ghh

100

ghi

011-ghj

011-

ghk

011-ghl
011-ghm

011-

100
011

ghn
gho
ghp

011-ghr

010-

ghs

00
01
01
01
00
01
01
01
01
01
01
01
01
01
01
01
01
00

010-ght
011-ghu
011-ghv

011-

000

ghw
ghx

011-ghy
011-ghz
011-ghch 01
000 ghgh+00
011-ghph 01
000 ghrh+00
011-ghsh 01
011-ghth 01
000 ghwh+00
011-ghqu 01
ghck+00

000
000
011
011
011
000
011
011
011
000
011
0
100
011
011
000
011
000
010
010
000
010
010
000
010
011
011
011
000
000
011
011
000

pha
phb
phe
phd
phe
phf
phg
phh
phi
phj
phk
phl
phm
phn
pho
php
phr
phs
pht
phu
phv
phw
phx
phy
phz

00
01
01
01
+00
01
01

00
01
01
01
00
01
01
01
00
01
01
=01
01
01
00
01
01
00
00
00
01
01
+00
00
01

phch 01
phgh 01
phph+00
phrh+00
phsh 01
phth 01
phwh+00

011
000
100
000
000
000
100
000
000
000
100
000
000
000
000
000
100
000
000
000
000
100
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
011
011
011
000
0
011
000
000
011
010
100

phqu 01
phck+00

rha
rhb
rhe
rhd
rhe
rhf
rhg
rhh
rhi
rhj
rhk
rhl
rhm
rhn
rho
rhp
rhr
rhs
rht
rhu
rhv
rhw
rhx
rhy
rhz

01
+00
+00
+00

01
+00
+00
+00

01
+00
+00
+00
+00
+00

01
+00
+00
+00
+00

01
+00
+00
+00

00
+00

rhch+00
rhgh+00
rhph+00
rhrh+00
rhsh+00
rhth+00
rhwh+00
rhqu+00
rhck+00

sha
shb
she
shd

she

shf
shg
shh
shi
shj
shk
shl

00
01
01
01
00
01
01
+00
00
01
00
=01

100
100
000
010
100
011
000
000
01
000
000
000
011
011
01
011
000
000
011
000
011
000
000
011
011
011
000
011
011
011
000
011
011
011
011
011
000
011
000
010
011
000
011
000
000
000
011
011

shm
shn
sho
shp
shr
shs
sht
shu
shv
shw
shx
shy
shz

-01
-01
00
00
=01
01
-00
00
01
=01
+00
00
01

shech 01
shgh 01
shph 01
shrh+00
shsh+00
shth 01
shwh+00
shqu 01
shck+00

tha
thb
the
thd
the
thf
thg
thh
thi
thj
thk
thl
thm
thn
tho
thp
thr
ths
tht
thu
thv
thw
thx
thy
thz

00
01
01
01
00
01
01
01
00
01
01
01
01
01
00
01
01
10
01
00
01
=01
+00
00
01

theh 01

011
011
000
011
000
000
011
000
100
000
000
000
100
000
000
000
100
000
000
000
000
000
100
000
000
000
000
000
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

thgh 01
thph 01
thrh+00
thsh 01
thth+00
thwh+00
thqu 01
thek+00

wha
whb
whe
whd
whe
whf
whg
whh
whi
whj
whk
whl
whm
whn
who
whp
whr
whs
wht
whu
whyv
whw
whx
why
whz

01
+00
+00
+00

01
+00
+00
+00

01
+00
+00
+00
+00
+00

01
+00
+00
+00
+00
+00
+00
+00
+00

00
+00

whch+00
whgh+00
whph+00
whrh+00
whsh+00
whth+00
whwh+00
whqu+00
wheck+00

qua
qub
quc
qud
que
quf

49

00
+00
+00
+00

00
+00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
011
011
011
011
011
011
0
011
011
011
01
011
011
01
011
011
011
010
011
011

qug
quh
qui
quj
quk
qul
qum
qun
quo
qup
qur
qus
qut
quu
quv
quw
qux
quy
quz

+00
+00

00
+00
+00
+00
+00
+00

00
+00
+00
+00
+00
+00
+00
+00
+00
+00
+00

quch+00
qugh+00
quph+00
qurh+00
qush+00
quth+00
quwh+00
ququ+00
quck+00

cka
ckb
cke
ckd
cke
ckf
ckg
ckh
cki
ckj
ckk
ckl
ckm
ckn
cko
ckp
ckr
cks
ckt
cku

01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
00
01
01

011
011
000
010
011
011
011
011
000
011
011
000
011
000

ckv 01
ckw 01
ckx +00
cky 00
ckz 01
ckch 01
ckgh 01
ckph 01
ckrh+00
cksh 01
ckth 01
ckwh+00
ckqu 01
ckeck+00

APPENDIX II

RANDOM WORD ALGORITHM

This appendix lists the algorithm described on page 15. Below is
a description of the notation and the variables used to describe a
state.

State Variables

Each loop through the algorithm produces new values of several
ctate variables and possibly adds a unit to the random word being
formed., The variables used to describe the state are defined as fol-
lows., "Binary" variables may have the value "true" or "false"; "dec-
imal" variables have a number as their value.

vowel found Set when a vowel is found in a syllable (binary).

last_vowel_found Value of vowel_found for previous unit in the ran-
: dom word (binary).

syllable_length Number of units in syllable so far (decimal, ini-
tially 1).

index Number of units in word so far (decimal, initially
1).

cons_count Number of consecutive consonants (decimal).

nchars Number of letters in word to be generated. Ini-

tially this is set to the length of the word (in
letters) desired. This value is decremented each
time a two-letter unit is generated so that the
number of units (index) can be compared to nchars
to determine if the end of the word has been
reached.

unit(1), unit(2), ... unit(index)
Unit(i) represents the i’th unit in the word.
Unit(index) is the current unit.

In addition to the state variables, two variables are defined for
use only internal to the algorithm. They are used to simplify the no-
tation.

50

v A binary variable which is set when the unit just generated is a
vowel (or an alternate_vowel to be treated as a vowel).

b A binary variable which gets set when a "break" pair (as defined on
page 12) is encountered, or when the previous pair was a "suffix"
pair and the current unit is not a vowel.

Notation

The following names are used in the algorithm for the eight flags
in the digram table:

begin,
not_begin,
end,
not_end,
break,
prefix,
suffix,

and illegal_ pair.

If one of these names appears with a value in parentheses immediately
following it, as "break(i)", the reference is to the "break" flag for
the pair of units [unit(i-1), unit(i)]. If no value appears, the ref-
erence is to the pair [unit(index-1), unit(index)] -- that is, the
reference is to the last two units.

The following names are used for the flags in the unit table:

no_final_split,

not_begin syllable,

vowel,

alternate_vowel,
and double_letter.

The "double_letter" flag was not explicitly mentioned in the discus-
sion earlier. It is set for units consisting of more than one letter.
A value in parentheses following the name, as in vowel(i), refers to
the vowel flag for unit(i). If no value appears the reference is to
the flag for unit(index), or the current unit.

Three procedures are referred to: "random_unit" is a user-suppl-
ied procedure to generate a random unit; "random_ vowel" is a user
supplied procedure to generate a random vowel unit; and "done" is an
internal procedure appearing near the end of the algorithm.

51

Algorithm

The algorithm is shown in the following pages. The text of the
algorithm is essentially the same as the main body of the random_word_
subroutine appearing in Appendix III. The algorithm is shown here
only for completeness -- it can stand alone and does not depend on any
support subroutines. Since the random_word_ subroutine as shown in
Appendix III is well documented and commented, no comments are
supplied below. A correspondence between this algorithm and the
random_word_ subroutine can easily be made.

The RANDOM_WORD procedure has an internal procedure DONE listed
near the end. The extents of the if-then-else clauses are indicated
by indentation.

52

RANDOM WORD ALGORITHM

BEGIN procedure RANDOM_WORD

retry:
if syllable_ length = 1
then
if index = nchars
then call random_vowel
else call random_unit
if (index # 1 & illegal_pair)
then go to retry
syllable_length = 2
if vowel | alternate_vowel
then cons_count = 0
else cons_count = 1
last_vowel found = 0
if double_letter
then
if index = nchars | (index = nchars-1 & “vowel)
then go to retry
else nchars = nchars - 1
else
if (syllable_length = 2 & “vowel_found & index = nchars) |
("vowel found | not_end(index-1)) & suffix(index-1)
then call random_vowel
else call random_unit
if illegal_pair |
(unit(index)=unit(index-1)=unit(index-2) & index>2)
then go to retry
if double_letter & index = nchars
then goto retry
else nchars = nchars - 1
if vowel | (alternate_vowel & “vowel(index-1))
then v = 1
elsev = 0
if syllable_length > 2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>